Augmented Lagrangian method for angular super-resolution imaging in forward-looking scanning radar
نویسندگان
چکیده
Angular super-resolution imaging in the forward-looking area of a scanning radar platform plays an important role in the application of scanning radar. However, the angular resolution of scanning radar is limited by the system parameters. Thus, improving the angular resolution of scanning radar beyond the limitation of the given system parameters is desired. We present an angular super-resolution imaging method by solving the associated deconvolution problem. We first formulate an angular super-resolution problem in scanning radar as a deconvolution task and then convert it to a constrained optimization problem by incorporating the prior information of the target in the scene. We then solve the constrained optimization problem in convex optimization framework using an augmented Lagrangian method. In order to solve the constrained optimization problem, a corresponding augmented Lagrangian function is constructed and its saddle point is found using alternating direction method. The advantages of the proposed method for angular super-resolution imaging in scanning radar are that the proposed method can not only realize the angular super-resolution imaging in scanning radar but also has high precision. Simulation and experiment results are given at the end to verify the validity of the proposed method compared with a Wiener filter that is applicable for angular super-resolution in scanning radar. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.9.096055]
منابع مشابه
An Iterative Shrinkage Deconvolution for Angular Super-Resolution Imaging in Forward-Looking Scanning Radar
The aim of angular super-resolution is to surpass the real-beam resolution. In this paper, a method for forward-looking scanning radar angular super-resolution imaging through a deconvolution method is proposed, which incorporates the prior information of the target’s scattering characteristics. We first mathematically formulate the angular super-resolution problem of forward-looking scanning r...
متن کاملBayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar
Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by...
متن کاملBayesian Angular Superresolution Algorithm for Real-Aperture Imaging in Forward-Looking Radar
Abstract: In real aperture imaging, the limited azimuth angular resolution seriously restricts the applications of this imaging system. This report presents a maximum a posteriori (MAP) approach based on the Bayesian framework for high angular resolution of real aperture radar. First, Rayleigh statistic and the lq norm (for 0 < q ≤ 1) sparse constraint are considered to express the clutter prop...
متن کاملForward Looking Radar Imaging by Truncated Singular Value Decomposition and Its Application for Adverse Weather Aircraft Landing
The forward looking radar imaging task is a practical and challenging problem for adverse weather aircraft landing industry. Deconvolution method can realize the forward looking imaging but it often leads to the noise amplification in the radar image. In this paper, a forward looking radar imaging based on deconvolution method is presented for adverse weather aircraft landing. We first present ...
متن کاملSuperresolution Imaging for Forward-Looking Scanning Radar with Generalized Gaussian Constraint
A maximum a posteriori (MAP) approach, based on the Bayesian criterion, is proposed to overcome the low cross-range resolution problem in forward-looking imaging. We adapt scanning radar system to record received data and exploit deconvolution method to enhance the real-aperture resolution because the received echo is the convolution of target scattering coefficient and antenna pattern. The Gen...
متن کامل